0 дауыс
19.5k көрілді

1

Білу

Интерференция құбылысы дегеніміз не?

Дифракция  құбылысы дегеніміз не?

2

Түсіну

Интерференция  құбылысына мысал келтір?

Дифракция  құбылысының түрлерін ата?

3

Қолдану

Интерференция  құбылыстары қалай көрініс табады?

Дифракция  құбылыстары қалай көрініс табады?

4

Талдау

Интерференция  құбылысының түрлерін салыстыр?

Дифракция  құбылысының түрлерін салыстыр?

5

Жинақтау

Интерференция, дифракция құбылысын  іске асыру әдістерін ата?

6

Бағалау

 Жаңа техникалардың дамуына интерференция, дифракция құбылысының маңызы қаншама?

2 жауап

0 дауыс

Жарықтың толқындық табиғаты интерференция құбылысы арқылы түсіндіріледі. Мысалы, сабын көпіршігіне, суға тамған мүнай кілегейіне күн сәулесі түскенде, олардың беттері қызылды-жасылды болып қүлпырып түрады. Мұндай жолақтардың түрлі түсті болуы көпіршік пен сүйыққа ак жарық түскендіктен болады. Яғни, жүқа пленканың (қабыршық) бетіне монохромат (бір түсті) жарық түссе, онда аралары күңгірт жолақпен бөлінген бір түсті жолақтар байқалып, олардың жарықталынуы бірдей болмайды. Олай болса, осындай ашық жэне күңгірт жолақтардың пайда болуы — жүқа пленка беттерінен шағылған жарық толқындары бірімен-бірі қосылысқанда, олардың бірін-бірі күшейту немесе әлсірету себебінен болады. Бұл құбылыс жарықтың интерференциясы деп аталады. Интерференция құбылысы жарық толқындарымен қатар, дыбыс толқындары мен электромагниттік толқындарға да тән қасиет.

Толығырақ: https://ikaz.info/zharykty-interferentsiyasy/

0 дауыс

Жарықтың интерференциясы

Фазалар ығысуы тұрақты және жиіліктері бірдей толкындардың қосылуы жарық толқындарының өзара әрекеттесуіндегі көңіл аударатын жағдай. Мұнда кеңістіктің кейбір нүктелерінде толқындардың қабаттасуынан бір-бірін күшейтетін, ал басқа бір нүктелерінде керісінше бір-бірін әлсірететін интерференция құбылысы байқалады. Экранда күңгірт және ашық жолақтар кезектесіп орналасады. Бұл интерференция құбылысы. Жарықтың интерференциясы механикалық толқындардың интерференциясы сияқты өтеді. Жарықтың минимум (әлсіреу) және максимум (күшею) шарттары (4.10) және (4.11) формулаларымен анықталады. Сонымен қатар жарық толқындары интерференциясының кейбір ерекшеліктері бар. Егер екі жарық көзінен бірдей жиілікті синусоидалық жарық толқындары шығарылса, онда олар кездескен жерде интерференция көрінісі пайда болады. Бірақ осы көріністі бір-біріне қатысы жоқ бірдей жарық шығаратын екі жарық көзінен шық қан толқындар арқылы алу мүмкін емес. Жарық толқындарының интерференция құбылысы жоқ деген қорытындыға келгендей боламыз.

Интерференция құбылысын 1675 жылы Томас Юнг Ньютон, одан кейін Юнг және Френель байқаған. Мұны қалай түсіндіруге болады? Шын мәнінде, мәселе толқынның цугінде екен. Дененің әр түрлі атомдары бір-біріне байланыссыз жарық шығарады. Сондықтан олардың жиіліктерінің бірдей болуына қарамастан, әр цугтің фазасы әр түрлі. Ал бұл жарықтың фазасы ретсіз өзгеретін электромагниттік толқын екенін көрсетеді. Сонда екі толқынды бір-біріне қосқанда пайда болған қорытқы толқынның берілген нүктедегі амплитудасы да кездейсоқ түрде бір секундта миллион есе (максимум немесе минимум болып) өзгеріп отырады.

Жарық түскен бет біздің көзімізге біркелкі жарық түскен беттей болып көрінеді. Сондықтан жарық толқынының интерференциясы тек когерентті толқындар қабаттасқанда ғана пайда болады.

Қос сәулелі интерференция және оны іске асыру әдістері

Когерентті толқындарды интерферометрлердің көмегімен алады. Ең қарапайым түрі — бір жарықты екіге жіктеу.

Юнг әдісі

4.10-сурет

Ағылшын физигі Томас Юнг жарық толқындарының кеңістіктік когеренттігін алды. Ол S жарық көзінің алдына кішкентай саңылауы бар S1 тосқауылды орналастырды. Жарық толқындары ол саңылаудан өтіп, бірдей фазамен бір уақытта екі кішкене S2 және S3 саңылауларға жетеді. Бұл саңылаулар бір-біріне жақын және жарық көзіне қатысты симметриялы орналастырылған (4.10-сурет).

Сондықтан S2 және S3 саңылаулары бір толқындық бетте жатыр деп есептеуге болады. Гюйгенс принципі бойынша толқындық беттің әрбір нүктесі екінші толқын көзі болып табылады.

Френель әдістері

Когерентті жарық толқынын алудың басқа жолын француз физигі Огюстjн Кан Френель ұсынды. Ол қос призма (бипризма) мен қос айнаны пайдаланды. Бипризма әрқайсысының сыну бұрышы өте аз болып келген бірдей екі призмадан тұрады. Олар бір-біріне табандарымен беттестірілген. Френельдің қос призмасының табанындағы бұрышы өте доғал -175° 179°. S жарық көзінен шыққан сәуле бипризмаға түседі де одан екі жарық толқыны S1 және S2 алынады. Олар шеңбердің бойында орналасқан.

Экранда тұрақты интерференциялық көрініс — кезектесіп орналасқан күңгірт, ақ жолақтар пайда болады. Қос айнаның жұмыс істеу приндипі де жоғарыдағы тәрізді Z1 және Z2 айналары центрі О нүктесі болатын шеңбердің радиусы болсын дейік. Жарық көзі S шеңбердің бойында орналасқан. Z1 және Z2 айналары жарық сәулесін екіге жіктейді, олар экранның бір А нүктесіне жиналады.

Жұқа пленка әдісі

Су бетіне майдың, мұнайдың, бензиннің тамшысы тамғанда әр түсті сурет пайда болатынын білеміз. Ондай суреттер сабынның көпіршігінде де, инеліктің қанатының үстінде де байқалады (түрлі-түсті қосымшадағы 1-сурет). Бензиннің жұқа қабыршағының бетіне жарық түскенде қандай процесс жүретінін қарастырайық. Бензиннің жұқа қабыршағы жазық параллель пластиналардан алынады. S жарық көзінен шығатын сәуле қабыршақтардан өткенде бірнеше когерентті сәулелерге бөлінеді. Біз жарық интерференциясын түскен жарықтан да, шағылған жарықтан да байқай аламыз. Бензин қабықшасы қалыңдығының үздіксіз өзгеруінен, жұқа қабыршақтағы интерференциялық сурет түрленіп отырады.

Есептеу жұмыстарын жүргізіп, толқынның жұқа қабыршақтағы жол айырымын анықтайтын формуланы табайық:

  1. өтетін жарықта A = 2dncosβ, мұндағы A — толқын жүрісінің жол айырымы, d — қабыршақтың қалыңдығы, п — қабыршақ затының сыну көрсеткіші, р — жарықтың сыну бұрышы;
  2. шағылған жарықта A = 2dncosβ + λ/2 Шағылған жарықта жол айырымына жарты-толқын ұзындығы қосылады, өйткені шағылғанда жарты толқын жоғалады.

Ньютон сақиналары

Ньютон сақиналары жұқа қабыршақтардағы интерференцияның дербес түрі, ол жұқа қабыршақ қалыңдығының біркелкі өзгеретін жағдайында байқалады. 1675 жылы Ньютон астрономиялық рефрактордың дөңес объективі мен жазық шыны арасындағы жұқа ауа қабатының түсін бақылаған. Ньютон тәжірибесінде тығыз сығылған шыны мен объективтің арасындағы ауаның жұқа қабатының қалыңдығы шыны мен объективтің түйіскен жерінен объективтің сыртқы шетіне қарай біркелкі ұлғая бастайды. Қарапайым есептеу аркылы өткен жарықтың радиусын, мәселен, ақшыл сақинаның радиусын анықтауға болады: {\displaystyle r={\sqrt {2Rd}}}{\displaystyle r={\sqrt {2Rd}}}

мұндағы r — сақинаның радиусы, R — линза қисығының радиусы, d — жазық шынының бетінен линзаның жарық сынатын бетіне дейінгі арақашықтық. 

...