(1+tg^2a)*cos^2а=(1+y^2/x^2)*x^2/R^2=x^2/R^2+y^2/R^2=x^2+y^2=1
(tga+tgß)/(ctga+ctgß)=(y/x+y1/x1)/(x/y+x1/y1)=((x1*y+x*y1)/(x*x1))/((x*y1+x1*y)/(y*y1))=(y*y1)/(x*x1)=tga*tgb
(cos^2a–ctg^2a)/(sin^2a-tg^2a)=((x^2/R^2-x^2/y^2)/(y^2/R^2-y^2/x^2))=((y^2*x^2-R^2*x^2)/(R^2*y^2))/((y^2*x^2-R^2*y^2)/(R^2*x^2))=(x^4*(y^2-R^2))/(y^4(x^2-R^2))=(x^4*-x^2)/(y^4*-y^2)=(-x^6/(-y^6))=(x^6/y^6)=ctg^6a